EconPapers    
Economics at your fingertips  
 

Applying double-mass pendulum oscillator with tunable ultra-low frequency in wave energy converters

Qinlin Cai and Songye Zhu

Applied Energy, 2021, vol. 298, issue C, No S0306261921006504

Abstract: Ocean waves are an ultra-low-frequency renewable energy source. Various point absorbers have been developed over the past decades as small-sized wave energy converters (WECs). However, realizing tunable and ultra-low frequencies in WECs remains an extremely challenging technological issue. This paper proposes a novel and simple design of a double-mass pendulum (DMP) oscillator whose natural frequency can be conveniently tuned by simply adjusting the positions of two independent masses. Shake table test results successfully illustrated that the tunable ultra-low natural frequency range (0.2–1.4 Hz) can be achieved even in a small-size DMP prototype, which can be hardly achieved in conventional oscillator designs. Subsequently, a small prototype of a point absorber enclosing the DMP-based energy harvester was fabricated and tested in a wave flume under different wave heights and periods. Average output power of nearly 100mW was captured in the experimental case when the wave period and height were 0.7 s and 0.1 m, respectively. The corresponding power extraction in a large-scale case is predicted to be up to 3.5 kW under wave height of 2 m and wave period of 6 s. The experimental results demonstrated that the proposed DMP oscillator is a promising power extraction device with an appealing tunable ultra-low frequency, which is extremely suitable for WECs, as well as other energy harvesters designed for ultra-low-frequency vibration sources.

Keywords: Double-mass pendulum; Wave energy converter; Frequency tuning; Ultra-low frequency; Renewable energy (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261921006504
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:298:y:2021:i:c:s0306261921006504

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2021.117228

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:298:y:2021:i:c:s0306261921006504