Data-driven reconstruction of interpretable model for air supply system of proton exchange membrane fuel cell
Zhihua Deng,
Qihong Chen,
Liyan Zhang,
Keliang Zhou,
Yi Zong,
Zhichao Fu and
Hao Liu
Applied Energy, 2021, vol. 299, issue C, No S030626192100684X
Abstract:
Appropriate air supply system controller is of great significance to improve the performance of proton exchange membrane fuel cell. Most of controllers rely on the high-precision, simple, and interpretable model. It is particularly important to establish the model for the fuel cell air supply system. Since the high-precision physically interpretable control-oriented model can provide an understanding of the underlying phenomena apart from computational tractability for aerodynamic problems. Data-driven sparse identification based on auto-encoder method is proposed to establish the model. It can be divided into the four steps. Firstly, collect data from a simulation model and the actual fuel cell system, and auto-encoder network is used to discover a coordinate transformation into a reduced space. Secondly, dictionary library is constructed from candidate terms based on system analysis. Thirdly, air supply model reconstruction problem is transformed into a sparse identification problem. Finally, the developed model is verified by two datasets. Compared with other methods, the results show that mean absolute error and root mean squared error of the three variables for proposed method are the smallest under both simulation data and real data. And the reconstruction results perfectly agree with the original simulation and the real data. Especially, the proposed method can be easily extended to other system modeling studies, such as the hydrogen supply system model and thermal management system model of the fuel cell system.
Keywords: Proton exchange membrane fuel cell; Air supply system; Auto-encoder network; Model reconstruction; Sparse identification (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S030626192100684X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:299:y:2021:i:c:s030626192100684x
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2021.117266
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().