EconPapers    
Economics at your fingertips  
 

A surrogate-model-based approach for estimating the first and second-order moments of offshore wind power

Behzad Golparvar, Petros Papadopoulos, Ahmed Aziz Ezzat and Ruo-Qian Wang

Applied Energy, 2021, vol. 299, issue C, No S0306261921007017

Abstract: Power curve, the functional relationship that governs the process of converting a set of weather variables experienced by a wind turbine into electric power, is widely used in the wind industry to estimate power output for planning and operational purposes. Existing methods for power curve estimation have three main limitations: (i) they mostly rely on wind speed as the sole input, thus ignoring the secondary, yet possibly significant effects of other environmental factors, (ii) they largely overlook the complex marine environment in which offshore turbines operate, potentially compromising their value in offshore wind energy applications, and (ii) they solely focus on the first-order properties of wind power, with little (or null) information about the variation around the mean behavior, which is important for ensuring reliable grid integration, asset health monitoring, and energy storage, among others. In light of that, this study investigates the impact of several wind-and wave-related factors on offshore wind power variability, with the ultimate goal of accurately predicting its first two moments. Our approach couples OpenFAST—a multi-physics wind turbine simulator—with Gaussian Process (GP) regression to reveal the underlying relationships governing offshore weather-to-power conversion. We first find that a multi-input power curve which captures the combined impact of wind speed, direction, and air density, can provide double-digit improvements, in terms of prediction accuracy, relative to univariate methods which rely on wind speed as the sole explanatory variable (e.g. the standard method of bins). Wave-related variables are found not important for predicting the average power output, but interestingly, appear to be extremely relevant in describing the fluctuation of the offshore power around its mean. Tested on real-world data collected at the New York/New Jersey bight, our proposed multi-input models demonstrate a high explanatory power in predicting the first two moments of offshore wind generation, testifying their potential value to the offshore wind industry.

Keywords: Offshore wind; Multi-input power curve; Power uncertainty; OpenFAST; Machine learning (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261921007017
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:299:y:2021:i:c:s0306261921007017

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2021.117286

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:299:y:2021:i:c:s0306261921007017