EconPapers    
Economics at your fingertips  
 

Interpolating high granularity solar generation and load consumption data using super resolution generative adversarial network

Rui Tang, Jonathon Dore, Jin Ma and Philip H.W. Leong

Applied Energy, 2021, vol. 299, issue C, No S0306261921007108

Abstract: The vast majority of commonly accessible photovoltaics (PV) generation and load consumption datasets have low temporal resolutions, leading to inaccuracies in the modeling and optimisation of PV-integrated battery systems. This study addresses this problem by proposing an interpolation model based on a super resolution generative adversarial network (SRGAN) that generates 5-minute PV and load power data from 30-minute/hourly temporal resolutions. The proposed approach is validated by two different datasets including large amounts of residential data and compared to an alternative predictive model. The results indicate that the model can adequately capture the targeted data distributions and temporal characteristics with negligible statistical differences from the measured high resolution data. Moreover, it performs consistently across different types of PV/load profiles and on average it results in 0.32% and 0.28% normalised root mean squared errors (NRMSEs) in daily totals of 5-minute PV and load power values when using hourly data as inputs. Under a time-of-use (ToU) tariff, the interpolated 5-minute data leads to 44.7% and 41.7% error reductions compared to using hourly data for estimating electricity costs and battery saving potentials of a PV battery system. Hence, the proposed model can be potentially applied in a battery sizing tool to obtain more accurate sizing results when only low resolution data is available.

Keywords: Data interpolation; Smart meter; Load energy; Solar energy (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261921007108
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:299:y:2021:i:c:s0306261921007108

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2021.117297

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:299:y:2021:i:c:s0306261921007108