Cooperative negawatt P2P energy trading for low-voltage distribution networks
M. Imran Azim,
Wayes Tushar and
Tapan K. Saha
Applied Energy, 2021, vol. 299, issue C, No S0306261921007121
Abstract:
In this paper, the formation and feasibility of negawatt (nW) peer-to-peer (P2P) energy trading in a grid-connected energy network are studied. In particular, a framework is presented to introduce nW P2P trading concept in the local electricity market in order to provide cost savings to each participating prosumer. To capture the decision-making strategy of various nW prosumers, a coalition game model is proposed whereby prosumers can trade energy frequently in a collaborative way. The proposed nW P2P trading framework satisfies the beneficial criterion of the coalition game. Also, it confirms the stability and prosumer-focused feature of the structured coalition. To distribute the total coalition payoff between nW prosumers, Shapley value and Nucleolus are used. Finally, simulation results are provided to examine the effectiveness of the developed nW P2P trading on an actual distribution network. The simulation results emphasise that the proposed nW P2P trading can (1) enable prosumers to minimise notable portion of their electricity costs compared to the grid’s-facilitated demand response scheme, (2) keep total power loss and voltage profiles within permissible ranges, and (3) avoid network protection arrangements required for voltage regulation as opposed to kilowatt P2P trading.
Keywords: Negawatt peer-to-peer trading; Coalition game model; Electricity cost reduction; Low-voltage distribution network; Power loss; Voltage profile (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261921007121
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:299:y:2021:i:c:s0306261921007121
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2021.117300
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().