EconPapers    
Economics at your fingertips  
 

Multi-target normal behaviour models for wind farm condition monitoring

Angela Meyer

Applied Energy, 2021, vol. 300, issue C, No S0306261921007509

Abstract: The trend towards larger wind turbines and remote locations of wind farms fuels the demand for automated condition monitoring strategies that can reduce the operating cost and avoid unplanned downtime. Normal behaviour modelling has been introduced to detect anomalous deviations from normal operation based on the turbine’s SCADA data. A growing number of machine learning models of the normal behaviour of turbine subsystems are being developed by wind farm managers to this end. However, these models need to be kept track of, be maintained and require frequent updates. This research explores multi-target models as a new approach to capturing a wind turbine’s normal behaviour. We present an overview of multi-target regression methods, motivate their application and benefits in SCADA-based wind turbine condition monitoring, and assess their performance in a wind farm case study. We find that multi-target models are advantageous in comparison to single-target modelling in that they can reduce the cost and effort of practical condition monitoring without compromising on the accuracy. We also outline some areas of future research.

Keywords: Condition monitoring; Fault detection; Multi-target model; Normal behavior modelling; Wind turbine (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (16)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261921007509
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:300:y:2021:i:c:s0306261921007509

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2021.117342

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:300:y:2021:i:c:s0306261921007509