Thermal inertia and energy efficiency assessment of Direct Solar Floor system using a switching-linear model
M.H. Benzaama,
L.H. Rajaoarisoa,
M.C. Lekhal,
S. Menhoudj and
A.M. Mokhtari
Applied Energy, 2021, vol. 300, issue C, No S0306261921007686
Abstract:
This study presents a case study of a room equipped with a Direct Solar Floor (DSF) in order to predict the true thermal and energy behaviour. DSF operation during the night by thermal inertia is a complex phenomenon, and its relative impact is proven to be influenced by many factors including the solar radiation and the thermal insulation of the slab. However, current physical models do not show this relationship efficiently. This paper will demonstrate by adopting switching linear models that this relationship can be described formally with a numerical model. In fact, the simulation models developed in literature are represented in a very simplified method and cannot be used for a detailed analysis of thermal operations of DSF. The present study aims to reduce the knowledge gap and resolve the limitations such as (i) a realistic explanation of the thermal behaviour of direct solar floor, (ii) identify the heating mode by thermal inertia in a quick and easy way and (iii) estimate the heating time by thermal inertia for a long period, which can later estimate the gain in energy consumption bring. The switching model has detected three operation modes of the Direct Solar Floor, one of which corresponds to the moment of heating by thermal inertia. The model can also evaluate the duration and the energy provided by the thermal inertia. As a result, it has been estimated at 310 h and 18.6 kWh for a test period of 1110 h, which corresponds to an average of 3.58 h per day.
Keywords: Direct Solar Floor (DSF); Thermal inertia; Thermal behaviour; Energy efficiency; Operating modes; Heating; Switching model; PWARX model (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261921007686
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:300:y:2021:i:c:s0306261921007686
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2021.117363
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().