Analysis, design and testing of a rolling magnet harvester with diametrical magnetization for train vibration
Yifeng Wang,
Shoutai Li,
Mingyuan Gao,
Huajiang Ouyang,
Qing He and
Ping Wang
Applied Energy, 2021, vol. 300, issue C, No S0306261921007789
Abstract:
Harvesting energy from ambient vibrations, particularly vibrations of a train, is very useful to build a transportation Internet of Things. This paper presents an electromagnetic vibration energy harvester (VEH) based on a cylindrical rolling magnet (RM) and one or three fixed magnets (FMs). This VEH can reach mono-stable and tri-stable potential energy states by changing the number of FMs, and enhance the nonlinearity of the system by reducing the vertical gap between the RM and FMs. Firstly, a theoretical model of the proposed VEH is established. During model construction, the commonly used dipole moment method (DMM) is found unsuitable for calculating the magnetic restoring force acting on the RM since the DMM cannot consider influences of magnet dimensions. Thus, the finite element method is applied. A position-varying factor is exploited to accomplish the electromagnetic coupling of the system. The occurrence of RM slip and the differences between its rolling and sliding effects are investigated. Then, frequency-sweeping tests are performed to understand the dynamical characteristics and energy harvesting capacity of the VEH. The experimental and simulated results under small-magnitude excitations exhibit similar trends, demonstrating the suitability of the theoretical model. The VEH with one FM achieves its maximum instantaneous power of 40.6 mW at 8.0 Hz (9.8 mW at 7.5 Hz for the VEH with three FMs). Finally, the application of this VEH for scavenging energy from the lateral vibration of a metro car body is explored in the laboratory, which suggests its high potential for powering a self-contained onboard monitoring node on a metro train.
Keywords: Vibration energy harvesting; Cylindrical magnet with diametrical magnetization; Railway application; Self-contained sensing node (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261921007789
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:300:y:2021:i:c:s0306261921007789
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2021.117373
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().