Understanding the blending effect of polyoxymethylene dimethyl ethers as additive in a common-rail diesel engine
Qiren Zhu,
Yichen Zong,
Wenbin Yu,
Wenming Yang and
Markus Kraft
Applied Energy, 2021, vol. 300, issue C, No S0306261921007832
Abstract:
Polyoxymethylene Dimethyl Ether (PODE) is known as a promising additive in the traditional diesel engine because it can reduce particulate matter emission in the exhaust gas. The reduction of the particulate matter emission when PODE is used as fuel additives is often attributed to the absence of C-C bond and the high oxygen content of the PODE molecular structure. In this paper, we have studied diesel-PODE3 blends at both low blending ratio (<10%) and high blending ratio (10–30%). We have found that the high oxygen content effect of PODE3 is only prominent in reducing the emission of particulate matter when there is a deficiency in the air supply of engine. Meanwhile, the effect of the absence of C-C bond has negligible impact on the emission of particulate matter. Moreover, an increase in the emission of the particulate matter was observed for the fuel blends containing low blending ratio of PODE3. This is attributed to the decrease in the mean chamber temperature for the PODE3-diesel blends as the lower heating value of PODE3 is much lower than diesel. Despite this, high blending ratio of PODE3 in diesel was found to still capable to decrease the emission of particulate matter. A summary chart has been proposed in this study to enable the prediction of the particle reduction ability of PODE3 additive under different blending ratios and engine loads. In addition, the combustion characteristics and gas emissions (HC and NOx) are also discussed in this paper.
Keywords: PODE; Particulate matter; Diesel engine; Fuel additive (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261921007832
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:300:y:2021:i:c:s0306261921007832
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2021.117380
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().