EconPapers    
Economics at your fingertips  
 

Hospital-oriented quad-generation (HOQG)—A combined cooling, heating, power and gas (CCHPG) system

Xiaoyuan Chen, Yu Chen, Mingshun Zhang, Shan Jiang, Huayu Gou, Zhou Pang and Boyang Shen

Applied Energy, 2021, vol. 300, issue C, No S0306261921007856

Abstract: Along with the global spread of the COVID-19 pandemic, a number of hospitals are operating in the over-loaded state, which results in the ever-increasing requirements of cooling, heating, power, and medical gas supplies. This paper investigates a novel concept of hospital-oriented quad-generation (HOQG) to produce a combined cooling, heating, power and gas (CCHPG) system. Local renewable energy source (RES), high temperature superconducting (HTS) power cable and superconducting magnetic energy storage (SMES) device are used as the low-carbon electricity producer, carrier and regulator, respectively. Compared to the conventional copper cable and electrochemical battery, HTS terminal power units have superior advantages of high-efficiency power delivery and high-quality power compensation. To accommodate the surplus electricity from local RESs and guarantee emergency supply for the targeted hospital buildings, three cryogenic fluids of liquefied methane gas, liquefied oxygen and liquefied nitrogen are used as back-ups for both energy fuel and medical gas. By adopting a series of cascade energy utilization and thermally-activated energy conversion facilities, multiple clean energies of cooling, heating and power are produced to supply medical devices, and multiple medical gases of oxygen, nitrogen and carbon dioxide are delivered to hospitals for patient treatments. Compared to conventional diesel oil and compressed gas back-ups, these three cryogenic liquids have advantages of high-capacity, high-security storage and low-pollution utilization. Another possible benefit can be the low-temperature environment of these medical gases offers vaccines an appropriate delivering pathway against the COVID-19 pandemic. Therefore, the proposed HOQG can be expected to fulfill the demand of energy conservation and emission reduction simultaneously during the normal operation, as well as the demand of sustainable energy and medical gas supply under severe conditions such as natural and man-made disasters.

Keywords: Hospital-oriented quad-generation (HOQG); Combined cooling, heating, power and gas (CCHPG); Superconducting power system; Cryogenic fluid of energy fuel and medical gas; COVID-19 pandemic (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261921007856
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:300:y:2021:i:c:s0306261921007856

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2021.117382

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:300:y:2021:i:c:s0306261921007856