Three-dimensional spatiotemporal wind field reconstruction based on physics-informed deep learning
Jincheng Zhang and
Xiaowei Zhao
Applied Energy, 2021, vol. 300, issue C, No S0306261921007911
Abstract:
In this work, a physics-informed deep learning model is developed to achieve the reconstruction of the three-dimensional (3-D) spatiotemporal wind field in front of a wind turbine, by combining the 3-D Navier–Stokes equations and the scanning LIDAR measurements. To the best of the authors’ knowledge, this is for the first time that the full 3-D spatiotemporal wind field reconstruction is achieved based on real-time measurements and flow physics. The proposed method is evaluated using high-fidelity large eddy simulations. The results show that the wind vector field in the whole 3-D domain is predicted very accurately based on only scalar line-of-sight LIDAR measurements at sparse locations. Specifically, at the baseline case, the prediction errors for the streamwise, spanwise and vertical velocity fields are 0.263 m/s, 0.397 m/s and 0.361 m/s, respectively. The prediction errors for the horizontal and vertical direction fields are 2.84° and 2.58° which are important in tackling yaw misalignment and turbine tilt control, respectively. Further analysis shows that the 3-D wind features are captured clearly, including the evolutions of flow structures, the wind shear in vertical direction, the blade-level speed variations due to turbine rotation, and the speed variations modulated by the turbulent wind. Also, the developed model achieves short-term wind forecasting without the commonly-used Taylor’s frozen turbulence hypothesis. Furthermore it is very useful in advancing other wind energy research fields e.g. wind turbine control & monitoring, power forecasting, and resource assessments because the 3-D spatiotemporal information is important for them but not available with current sensor and prediction technologies.
Keywords: Computational fluid dynamics; Light detection and ranging (LIDAR); Navier–Stokes equations; Physics-informed deep learning; Wind field prediction (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (13)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261921007911
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:300:y:2021:i:c:s0306261921007911
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2021.117390
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().