EconPapers    
Economics at your fingertips  
 

SolarNet: A hybrid reliable model based on convolutional neural network and variational mode decomposition for hourly photovoltaic power forecasting

Deniz Korkmaz

Applied Energy, 2021, vol. 300, issue C, No S0306261921008072

Abstract: Photovoltaic (PV) power generation has high uncertainties due to the randomness and imbalance nature of solar energy and meteorological parameters. Hence, accurate PV power forecasts are essential in the operation of PV power plants (PVPP) for short-term dispatches and power generation schedules. In this study, a novel convolutional neural network (CNN) model, namely SolarNet, is proposed for short-term PV output power forecasting under different weather conditions and seasons. The proposed CNN model is designed as a parallel pooling structure to increase the forecasting performance. This structure consists of max-pooling and average-pooling blocks. The input parameters are the measured historical solar radiation, temperature, humidity, and active power data. The power data is decomposed into sub-components with the variational mode decomposition method and a data preprocessing and reconstruction process is utilized to obtain deep input feature maps. After input parameters are converted to hue-saturation-value (HSV) color space, the subsets feed to the input of the network. The experimental studies are performed with a case study using a 23.40 kW PVPP dataset from the Desert Knowledge Australia Solar Centre. The design CNN model is also compared with benchmark deep learning methods. In the experiments, the average correlation coefficient (R), root mean square error (RMSE), and mean absolute error (MAE) of the proposed method for 1-h different weather conditions are achieved as 0.9871, 0.3090, and 0.1750, respectively. The experimental results show that the proposed deep forecasting method has higher accuracy and stability in short-term PV power forecasting and outperforms the other deep learning methods.

Keywords: Photovoltaic power forecasting; Convolutional neural network; Parallel pooling; Variational mode decomposition; Deep learning (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (32)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261921008072
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:300:y:2021:i:c:s0306261921008072

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2021.117410

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:300:y:2021:i:c:s0306261921008072