Benefits of small-size communities for continuous cost-optimization in peer-to-peer energy sharing
Romaric Duvignau,
Verena Heinisch,
Lisa Göransson,
Vincenzo Gulisano and
Marina Papatriantafilou
Applied Energy, 2021, vol. 301, issue C, No S0306261921008023
Abstract:
Due to ever lower cost, investments in renewable electricity generation and storage have become more attractive in recent years to electricity consumers at different scales. At the same time, electricity generation and storage have also become something that can be shared or traded locally in energy communities and microgrid systems. In this context, peer-to-peer (P2P) sharing has gained attention, since it offers a way to optimize the cost-benefits from distributed resources, making them financially more attractive. However, cooperation in practical instances still faces unclear requirements about e.g. how much predictive power is required for significant cost-saving; how many peers to contact to form efficient groups; and then, who to team up with for sharing electricity generation and storage. To answer such questions, we introduce a realistic and comprehensive cost-optimization model for P2P energy sharing communities, making continuous decisions while using only limited forecast for the input data. We provide strong evidence, based on the analysis of real household data, that the financial benefit of cooperation does not require long forecast horizons and even P2P energy sharing in small groups (with only 2–5 participants in this study) can reach a high fraction (96% in our results) of the ideal maximum gain, achievable when all input is known ahead of time. Maintaining such small communities results in much lower associated complexity and better privacy, as each participant only needs to share its data with few other peers. Our findings shed new light and motivate requirements for how to organize locally in an efficient manner prosumers and consumers into energy sharing communities in tomorrow’s real implementations.
Keywords: Peer-to-peer energy sharing; Distributed Energy resources; Continuous cost-optimization; Small-size communities; Data sharing in p2p energy communities (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (12)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261921008023
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:301:y:2021:i:c:s0306261921008023
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2021.117402
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().