EconPapers    
Economics at your fingertips  
 

Optimal investment and scheduling of residential multi-energy systems including electric mobility: A cost-effective approach to climate change mitigation

Moritz Mittelviefhaus, Giacomo Pareschi, James Allan, Gil Georges and Konstantinos Boulouchos

Applied Energy, 2021, vol. 301, issue C, No S0306261921008357

Abstract: Residential energy and mobility demand are responsible for a substantial share of global greenhouse gas emissions due to high dependency on fossil fuels in heating and motorized individual transport. Technology upgrades might enable cost-effective climate change mitigation in decentralized mobility-including Multi-energy Systems (MIMES). Their holistic and cross-sectoral optimization with respect to design and operation can innovatively identify tradeoffs between ecological and economical solutions, quantify potential benefits and show drawbacks over current solutions. To this end, this work provides a novel, hourly-resolved, consumer-centric, multi-objective optimization framework based on the Energy Hub concept that includes private mobility investments. It compares four distinct technology portfolios for minimal lifecycle emissions and total annualized cost when supplying residential demands to promote beneficial solutions. In a case study, consumers may modify their combustion-based heating and mobility systems (1) by switching to e-mobility (2), by switching to stationary Multi-energy Systems (3), or by switching to e-mobility and Multi-energy Systems simultaneously (4). Optimizations on 83 stochastically selected single- and multi-family buildings in St. Gallen, Switzerland, demonstrate that all three technological upgrades offer improved performance over (1): While costs decrease moderately in cost-driven optimizations, emission reductions range from 16% up to 68% when emission-driven optimizations are performed. The joint electrification of stationary and mobile assets (4) is particularly attractive and outperforms all other technology cases. Scenario (3) offers the second-best performance. While the optimal design and operation of assets depend on the technology availability, emission reduction targets, building size, and demand properties, an uncertainty analysis underpins the overall benefits of upgrades and accredits robustness to abovementioned ranking for wide techno-economic parameter variations and objectives. Pathways for further emission reductions are additionally shown, and the increased initial cost and seasonal dependence on the electricity grid are discussed as hurdles for a widespread implementation of economical and climate-friendly MIMES.

Keywords: Multi-energy system; Energy hub; Electric mobility; Uncertainty; Multi-objective problem; Optimization model (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261921008357
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:301:y:2021:i:c:s0306261921008357

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2021.117445

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:301:y:2021:i:c:s0306261921008357