Tailoring the vanadium/proton ratio of electrolytes to boost efficiency and stability of vanadium flow batteries over a wide temperature range
Yongbin Liu,
Lihong Yu,
Le Liu and
Jingyu Xi
Applied Energy, 2021, vol. 301, issue C, No S0306261921008448
Abstract:
Fast capacity decay and narrow temperature window still hinds the practical application of vanadium flow batteries (VFB). Optimization the electrolyte composition is an effective strategy to realize the stable operation of VFB. Herein, we introduce the concept of V/H ratio (vanadium ion to proton concentration ratio) in electrolyte to explore the vanadium concentration impact on overall performance of VFB. Theoretical analysis and experimental results indicate that reducing the V/H ratio is beneficial to obtain higher efficiency and better cycle stability over wide temperature (-15 °C ~ 55 °C). Meanwhile, during long-term operation, a lower V/H ratio electrolyte can achieve higher electrolyte utilization rate and deliver higher capacity despite the lower theoretical capacity density. Unlike previous studies that focused on increasing the vanadium concentration to obtain a higher theoretical capacity density, our techno-economic assessment clearly demonstrates that a relatively low vanadium concentration (i.e. 1.0–1.2 M) is more suitable for VFB, because safer, cheaper and more stable operation is particularly important for large-scale energy storage.
Keywords: Vanadium flow battery; Electrolyte composition; V/H ratio; Cycling stability; Temperature resistance; Techno-economic assessment (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261921008448
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:301:y:2021:i:c:s0306261921008448
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2021.117454
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().