System-level virtual sensing method in building energy systems using autoencoder: Under the limited sensors and operational datasets
Yejin Hong,
Sungmin Yoon,
Yong-Shik Kim and
Hyangin Jang
Applied Energy, 2021, vol. 301, issue C, No S0306261921008473
Abstract:
Sensing networks and their environments are essential in intelligent building systems because of their increasing dependency on operational data. Virtual sensing technology has been applied in building energy systems to provide the more reliable and informative sensing environments. However, conventional virtual sensors still have structural and practical limitations under the physical sensor absences and limited datasets. Existing virtual sensors are separately developed by modeling multiple input variables and a single target (Xs to Y), which is the variable-level virtual sensor (VLVS); therefore, these virtual sensors cannot benefit by either using their target variable (Y) or by considering other virtual sensors when developing the models. This can result in insufficient accuracy, particularly in the limited sensors. Herein, to overcome these limitations, a novel virtual sensing framework, system-level virtual sensing (SLVS), is proposed for building energy systems using an autoencoder. Two strategies are also proposed. The autoencoder-based SLVS with the two strategies was applied in a real operational district heating system. The first strategy showed an improved accuracy using a new assistance virtual sensor, which is derived by additional information and knowledge regarding system design, control, and devices. It could also overcome the training data dependency in the limited datasets. The second strategy provided a replacement function for the SLVS specialized for backup and a calibration effect for the existing VLVS. Thus, the results showed that the suggested SLVS can achieve multifunctional high-accuracy virtual sensing; the accuracies of 99.89%, 99.68%, and 97.91% were shown respectively for temperatures, pressures, and control signals.
Keywords: System-level virtual sensing; Virtual sensors; Autoencoder; District heating system; Intelligent building energy systems (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261921008473
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:301:y:2021:i:c:s0306261921008473
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2021.117458
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().