Photovoltaic power forecast based on satellite images considering effects of solar position
Zhiyuan Si,
Ming Yang,
Yixiao Yu and
Tingting Ding
Applied Energy, 2021, vol. 302, issue C, No S0306261921008965
Abstract:
The rapid variation of clouds is the main factor that causes the fluctuation of photovoltaic power.11This work was supported by the National Key Research and Development Program of China under Grant 2019YFE0118400.The satellite images contain plenty of information about clouds, applicable for photovoltaic power forecast. However, in practice, two main factors obstruct the application of the satellite images: 1) the relatively low update frequency of the satellite images mismatches the photovoltaic power forecasting frequency, and 2) the cloud region that blocks the sunlight changes significantly with time. In this paper, a novel satellite image-based approach for photovoltaic power forecast is proposed to overcome these obstacles and achieve accurate forecasting results. Firstly, concerning the hourly updated satellite images, a nonlinear cloud movement forecasting model, considering the thickness and shape changes of the cloud, is presented to forecast the hourly variation of the images. Secondly, an active cloud region selection rule is derived based on the changing solar position to dynamically select the cloud region that blocks the concerned photovoltaic power station in a satellite image. Thirdly, a sequential cloud region selection algorithm is provided to estimate the intra-hour variation of the cloud to match the photovoltaic power forecasting frequency. Finally, the photovoltaic power is predicted using the XGBoost algorithm concerning the effects of the cloud and other influencing factors. Testing results show that the proposed method can achieve more accurate photovoltaic power forecasts using the low update frequency satellite images. Meanwhile, the superior performance compared with other benchmarks also verifies the effectiveness of considering cloud information obtained by the proposed method for photovoltaic power forecast.
Keywords: Cloud motion forecast; Photovoltaic power forecast; Satellite images; Solar position; XGBoost (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (29)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261921008965
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:302:y:2021:i:c:s0306261921008965
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2021.117514
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().