Optimisation of two-stage biomass gasification for hydrogen production via artificial neural network
Hannah O. Kargbo,
Jie Zhang and
Anh N. Phan
Applied Energy, 2021, vol. 302, issue C, No S0306261921009454
Abstract:
A two-stage gasification has been proven as an effective and robust approach for converting low-valued and/or highly heterogeneous materials i.e. waste, into hydrogen and/or syngas due to its tight control and flexibility in operation. As the gas yield and gas properties depend upon materials and operating conditions, the interactions of operating conditions should not be ignored. However, these have not been able to fully capture experimentally. In this work, an artificial neural network model was developed and validated using experimental data to predict and optimise the gasification process thereby reducing time and costs in developing and testing. The model can predict accurately gas composition and yield corresponding to the variations at the output with a correlation R2 > 0.99. The developed neural network model was then applied for optimising operating conditions of the two-stage gasification for high carbon conversion, high hydrogen yield and low carbon dioxide in nitrogen and carbon dioxide environments. The predicted conditions were tested, and the results agreed well with experimental data. For example, at the optimum operating conditions (900˚C for the 1st stage and 1000 °C for the 2nd stage with a steam/carbon ratio of 3.8 in nitrogen and 5.7 in carbon dioxide environments), the gas yield, hydrogen and carbon dioxide were 96.2 wt%, 70 mol% and 16.4 mol% for nitrogen environment and 97.2 wt%, 66 mol% and 12 mol% for carbon dioxide environment.
Keywords: Two-stage gasification; Hydrogen; Artificial neutral network; Optimisation (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261921009454
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:302:y:2021:i:c:s0306261921009454
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2021.117567
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().