Techno-economic and operational assessment of concentrated solar power plants with a dual supporting system
R.E. Gutiérrez,
P. Haro and
A. Gómez-Barea
Applied Energy, 2021, vol. 302, issue C, No S0306261921009739
Abstract:
This study evaluates the benefits of integrating a full renewable dual back-up system (biomass and Thermal Energy Storage (TES)) in Concentrated Solar Power (CSP) plants. Two plants of 50 MWe capacity each are modelled and simulated, based on Parabolic Trough and Solar Tower technologies, with the integration of a biomass grate boiler in parallel to the power island. The Analytic Hierarchy Process is used as a Multi-Criteria Decision Method to compare the performance according to technical, economic, and operational criteria of 7 operating strategies. These strategies have been defined for integrating the biomass block for five levels of TES (No-TES, 5, 10, 15 and 20 h). The results show that the participation of biomass back-up favours the operation of the system as a base-load plant, increasing the capacity factor (CF) up to 71%, the net electric efficiency up to 10%, and reducing the cost of generation down to 56%, compared to stand-alone CSP plants. For the considered solar resource (Seville, Spain), reasonable generation costs (0.153 USD/kWh) can be achieved for a balanced trade-off between biomass and TES while allowing a firm energy supply (CF ≥ 80%) and reducing the required flexibility to the boiler. In addition, generation with a high solar share (over 50%) can be achieved with the proposed dual supporting system, favouring access to solar-driven incentives, as well as reducing the sensitivity of the system to the risks associated with biomass supply.
Keywords: Concentrated solar power; Biomass energy; Hybrid power system; Thermal energy storage; Techno-economic assessment; Dispatch strategy (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261921009739
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:302:y:2021:i:c:s0306261921009739
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2021.117600
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().