EconPapers    
Economics at your fingertips  
 

Cyber-physical co-modeling and optimal energy dispatching within internet of smart charging points for vehicle-to-grid operation

Yitong Shang, Hang Yu, Songyan Niu, Ziyun Shao and Linni Jian

Applied Energy, 2021, vol. 303, issue C, No S0306261921009697

Abstract: Vehicle-to-grid (V2G) technology plays an important part in achieving carbon neutrality. Hence, reducing the execution time under the real-time application becomes an urgent issue. In this paper, we develop a cyber-physical co-modeling to fulfill the fundamental insights into the internet of smart charging points (ISCP), wherein the local controllers are designed near the plug-in electric vehicles (PEVs), and are coordinated with each other. In perspective of energy dispatching, a hierarchical V2G scheduling is implemented in a distributed way to decompose the optimization problem into several sub-problems. Besides, the parallel computing is applied in the V2G problem to accelerate the speed of obtaining results. Moreover, the voltage regulation is applied near the energy coordinator with high-performance computer rather than by the local controller. In perspective of network communication, the small-world network is applied to ensure the communication efficiency and decrease the wiring costs. Besides, the privacy-preserving of both the energy coordinator and the PEV users is guaranteed by processing and storing the sensitive information of the two participants nearby. Finally, the cyber-physical co-modeling is performed in Matlab and Network Simulator 2. Results show load flatting, self-consumption of photovoltaic output, voltage regulation, and up/down regulation are achieved. Moreover, the delay of small-world network is 90.94 times faster than that of lattice network, and the cost of small-world network is nearly 500 times less than that of full mesh network. Particularly, the execution time for V2G operation at one-time interval is less than 1 s.

Keywords: Cyber-physical co-modeling; Internet of smart charging points; Optimal energy dispatching; Parallel computing; Small-world network; Network simulation (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261921009697
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:303:y:2021:i:c:s0306261921009697

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2021.117595

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:303:y:2021:i:c:s0306261921009697