Designing reliable future energy systems by iteratively including extreme periods in time-series aggregation
Holger Teichgraeber,
Lucas Elias Küpper and
Adam R. Brandt
Applied Energy, 2021, vol. 304, issue C, No S0306261921010424
Abstract:
Generation Capacity Expansion Planning (GCEP) requires high temporal resolution to account for the volatility of renewable energy supply. Because the GCEP optimization problem is often computationally intractable, time-series input data are often aggregated to representative periods using clustering. However, clustering removes extreme events, which are important to achieve reliable system designs. We present a method to include extreme periods into time-series aggregation for GCEP that guarantees reliable system designs on the full input data even though only the reduced data set is used for system design. Our method iteratively adds extreme periods to the set of representative periods based on information from the optimization problem itself until the energy system provides power reliably.
Keywords: Clustering; Energy systems; Time-series aggregation; Temporal resolution; Extreme periods; Optimization (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261921010424
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:304:y:2021:i:c:s0306261921010424
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2021.117696
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().