EconPapers    
Economics at your fingertips  
 

Real-time energy management for fuel cell electric vehicle using speed prediction-based model predictive control considering performance degradation

Shengwei Quan, Ya-Xiong Wang, Xuelian Xiao, Hongwen He and Fengchun Sun

Applied Energy, 2021, vol. 304, issue C, No S0306261921011697

Abstract: Due to the poor dynamic response ability of the fuel cell, the battery is normally applied to integrate with fuel cell to configure the hybrid power system in electric vehicles. In this paper, a vehicle speed prediction model predictive control (SP-MPC) energy management strategy is developed for the hybrid power system in fuel cell electric vehicles. The main principle of the proposed SP-MPC is that the future vehicle total power demand is forecasted via the Markov speed predictor and imported into the energy management system response prediction model to improve the control performance by more accurate disturbance description. The objective function is set for equivalent hydrogen consumption minimization and fuel cell degradation inhibition. As a contrast, the normal MPC strategy, the speed prediction dynamic programming (SP-DP) strategy and the DP offline strategy are formulated. Comparing with the normal MPC strategy, the SP-MPC strategy has a 3.74% reduction in the total operation cost under MANHATTAN condition. The SP-MPC strategy also has a 1.39% reduction in the total operation cost than the SP-DP strategy. Moreover, two scenarios are introduced with different disturbance prediction accuracy to verify the influences of the prediction inaccuracy on the SP-MPC and SP-DP results. For SP-DP strategy, the total operation cost under actual forecast scenario has increased by 5.03% compared with the perfect forecast scenario. The similar result can be seen in the SP-MPC, but the increase between perfect and actual forecast scenario is only 1.02%, which indicates a better robustness to the disturbance prediction inaccuracy compared with the SP-DP strategy. A DSP hardware in loop (HIL) test is conducted for real-time performance verification of the proposed SP-MPC.

Keywords: Fuel cell electric vehicle; Energy management strategy; Model predictive control; Markov-based speed prediction; Total operation cost minimization; Fuel cell degradation (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (30)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261921011697
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:304:y:2021:i:c:s0306261921011697

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2021.117845

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:304:y:2021:i:c:s0306261921011697