EconPapers    
Economics at your fingertips  
 

Multi-party stochastic energy scheduling for industrial integrated energy systems considering thermal delay and thermoelectric coupling

Liudong Chen, Nian Liu, Chenchen Li, Lei Wu and Yubing Chen

Applied Energy, 2021, vol. 304, issue C, No S0306261921011995

Abstract: Multi-dimensional stochastic factors challenge the interactive energy scheduling of the industrial integrated energy system (IIES). Previous research focuses on either deterministic energy scheduling or individual stochastic scheduling while neglecting complicated interactions among uncertain parties, which brings the research gaps about stochastic multi-party’s interaction. In this regard, a multi-party stochastic energy scheduling approach in IIES is proposed based on the stochastic game. A decentralized decision support system is considered, and a stochastic utility model is designed for decentralized IUs with multi-dimensional stochastic factors from photovoltaic (PV) production and IIES parameters, enabling them to participate in the multi-energy scheduling with their own strategies. A stochastic game model is developed considering the thermoelectric coupling and the IUs’ interaction. The co-decision mechanism, recognizing different transfer times of electrical and thermal energy, is built based on the state transition within the game. Moreover, a distributed solution algorithm that includes the Markov decision process and iterative method is designed to address the problem of the “curse of dimensionality” arising from multiple stochastic factors. Finally, case studies with realistic data from an industrial park in Guangdong Province, China, are designed to show the effectiveness of the proposed approach, which enhances IUs’ profits by 9.4% and fits flexible load strategies and price strategies. The decentralized system can also reduce the computation time by 70.1% compared to the centralized system. Through analyzing different number of scenarios and intervals for PV generation, electrical and thermal load, the conclusion has obtained that increase the number of scenarios has a negative effect on IUs’ decision, but increase the number of load intervals contributes to more specific results and higher utility.

Keywords: Industrial integrated energy system; Game theory; Multi-dimensional stochastic factors; Energy scheduling; Multi-party (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261921011995
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:304:y:2021:i:c:s0306261921011995

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2021.117882

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:304:y:2021:i:c:s0306261921011995