Impact of power-to-gas on the cost and design of the future low-carbon urban energy system
Jussi Ikäheimo,
Robert Weiss,
Juha Kiviluoma,
Esa Pursiheimo and
Tomi J. Lindroos
Applied Energy, 2022, vol. 305, issue C, No S0306261921010643
Abstract:
Power-to-gas technology has been proposed as one component for future energy systems facing decarbonization targets. This paper presents a power-to-gas focused open optimization model for studying cost efficient design and operation of future urban energy system. The model is able to distinguish the benefits of different configurations of power-to-gas by modelling several energy vectors, including electricity, heating, and cooling alongside with different plant components. The usefulness of the built multi-vector model is illustrated by a case study where the benefits of power-to-gas are studied in the context of a medium-sized Nordic city. The results show that the city is able to reach carbon neutrality with the help of power-to-gas. Power-to-gas provides cost savings by reducing the need of heat storages and transmission capacity. The savings are greatest when the emission reduction goal is high and transmission capacity expansion is expensive. Direct air capture appears as the superior carbon dioxide source when compared to post combustion capture from flue gases due to costs and annual availability. The case study shows no economic benefit for distributed power-to-gas.
Keywords: Power-to-gas; Multi-vector energy networks; Optimal dispatch; Hydrogen; Urban energy systems; Design optimization (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (19)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261921010643
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:305:y:2022:i:c:s0306261921010643
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2021.117713
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().