High-resolution data shows China’s wind and solar energy resources are enough to support a 2050 decarbonized electricity system
Mingquan Li,
Edgar Virguez,
Rui Shan,
Jialin Tian,
Shuo Gao and
Dalia Patiño-Echeverri
Applied Energy, 2022, vol. 306, issue PA, No S0306261921012988
Abstract:
This study aims to provide a detailed spatial and temporal characterization of China’s wind and solar energy resource potential. Quantifying this potential is necessary to identify pathways to achieve a deep decarbonization of its electric power system as this nation pursues carbon neutrality by 2060. This study identifies and characterizes sites suitable for onshore wind and ground-mounted solar PV deployment, quantifies their electricity generation potential, and assesses their spatial heterogeneity across the country and temporal variability throughout the seasons. Resource potential estimates are obtained by combining the latest data with high spatiotemporal resolution with a geographic information system (GIS) analysis that compiles information on wind and solar energy resources, land use, surface elevation and slope, and geomorphology. Results show that China’s vast resource potential for wind and solar is enough to provide one-and-a-half times 2050′s expected electricity demand. Results also demonstrate that China’s resource-rich areas do not correspond to demand centers, except for provinces like Shandong, Hebei, and Jiangsu, which have high electricity demand and renewable potential. The seasonal patterns show that China should develop wind and solar energy simultaneously, to exploit wind’s highest potential during winter and early spring, and solar’s higher production during late spring and summer. These findings shed light on the sites that should be prioritized for renewable development and the need to expand power transmission capacity connecting energy-rich areas with load centers, and energy storage capacity and flexible resources to balance variable renewable output with load.
Keywords: Variable renewable energy; Decarbonization; Energy potential; Geographical layout; Temporal variation (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (26)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261921012988
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:306:y:2022:i:pa:s0306261921012988
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2021.117996
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().