EconPapers    
Economics at your fingertips  
 

Rapid rise of decarbonization potentials of photovoltaics plus electric vehicles in residential houses over commercial districts

Takuro Kobashi, Younghun Choi, Yujiro Hirano, Yoshiki Yamagata and Kelvin Say

Applied Energy, 2022, vol. 306, issue PB, No S0306261921014185

Abstract: Rooftop photovoltaics (PVs) integrated with electric vehicles (EVs) has the potential to deeply decarbonize urban energy systems in a cost-effective way. The SolarEV City Concept suggested that the rooftop PV plus EV systems can supply up to 95% of electricity demand within cities in Japan. However, it was not clear which district in city could consume, generate, and store the PV electricity, as each district has different load patterns, building structures, and number of parked cars. In this study, we performed techno-economic analyses on rooftop PV systems integrated with stand-alone batteries or EVs in residential and commercial districts in Japan from 2020 to 2040. We found that rooftop PV systems in 2020 are already cost competitive relative to existing energy systems. However, “PV + EV” systems in residential houses rapidly increases its economic advantage over commercial districts due to greater rooftop space and higher number of available vehicles. Moreover, energy sharing significantly improved the decarbonization potential. By 2025, energy cost savings, payback periods, and internal rate of return (IRR) of residential “PV + EV” systems respectively reached 23%, 9 years, and 11%, and continued improving in subsequent years. CO2 emissions from electricity and gasoline consumption was reduced by 88%, and the system was capable to supplying 89% of electricity demand. The results indicate that residential “PV + EV” systems are a potential source for significant renewable energy generation and storage that can also produce increasingly dispatchable electricity. Policy makers, industries, and communities should prepare to establish these systems through regulatory reform and demonstration projects to scale-up after 2025.

Keywords: Renewable energy; Photovoltaics; Electric vehicles; Battery; Urban decarbonization; Techno-economic analysis (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (13)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261921014185
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:306:y:2022:i:pb:s0306261921014185

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2021.118142

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:306:y:2022:i:pb:s0306261921014185