EconPapers    
Economics at your fingertips  
 

Machine learning analysis of electric arc furnace process for the evaluation of energy efficiency parameters

Vaso Manojlović, Željko Kamberović, Marija Korać and Milan Dotlić

Applied Energy, 2022, vol. 307, issue C, No S0306261921014768

Abstract: The electric arc furnace has been the subject of extensive research due to its complex and chaotic nature. Machine learning methods provide a powerful forensic examination of industrial processes as they exclude numerous assumptions and involve irregularities present in industrial conditions. In this study, different machine learning and data processing methods were used to evaluate the energy efficiency parameters of the electric arc furnace process. The dataset was collected over five years, in a steelmaking factory, with 42 features. This data was split into training and test sets, which were used for training and evaluation, respectively. With extensive data management, the data quality and machine learning model performance were improved. It was found that selected models display similar performance, yet the artificial neural network shows greater flexibility when changing targets. The results indicate that a data-centric rather than model-centric approach is better for improving model performance. Using the partial dependence plot and SHAP method, insight was gained into each parameter’s correlation with the target. It was found that the amount of hot heel (melted steel left in the furnace, to be re-heated) was the main factor disturbing the data quality and model performance. It was also demonstrated that data for total oxygen consumption should be divided from the oxygen used into refining and natural gas. This highly improves model performance. Employing a data-centric machine learning model to control and optimize main process parameters (with a small capital investment) leads to lower energy consumption for industrial processes.

Keywords: Electric arc furnace; Machine learning; Electricity consumption; Data-centric approach (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261921014768
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:307:y:2022:i:c:s0306261921014768

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2021.118209

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:307:y:2022:i:c:s0306261921014768