Order reduction method for high-order dynamic analysis of heterogeneous integrated energy systems
L.X. Wang,
J.H. Zheng,
Z.G. Li,
Z.X. Jing and
Q.H. Wu
Applied Energy, 2022, vol. 308, issue C, No S0306261921015269
Abstract:
The dynamics of heterogeneous integrated energy systems (HIES) coupling of electricity, gas, and heating/cooling subsystems is with high-order characteristics. The complex dynamics, including electromagnetic transients, electromechanical transients, hydraulic and thermal dynamics, exist in different system devices and interacts with others in different time scales. To deal with the difficulty of analysing the multi-time scale dynamics, this paper proposes an order reduction method (ORM) to map high-order modes into a lower dimensional space. Firstly, the complex model of HIES is partitioned and modelled by individuals, and the dynamic characteristics of each unit is revealed. Then modal synthesis is used to obtain feature modes of the system. Similar dynamics of individuals are synthesized whereas different modes are classified in order. When exploring dynamic process of a certain variable, the relevant modes are extracted from the synthesis model, with other modes handled as parametric or algebraic equations. Simulation studies are conducted to investigate dynamic characteristics of a test HIES using the proposed ORM. The results indicate that the proposed method is capable of simulating high-order dynamics of the test system. Furthermore, it has advantages in both computation accuracy and time, compared with equal-step method and conventional subsystem multi-step simulation method.
Keywords: Heterogeneous integrated energy system; High-order dynamic analysis; Order reduction method (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261921015269
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:308:y:2022:i:c:s0306261921015269
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2021.118265
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().