EconPapers    
Economics at your fingertips  
 

Scalable probabilistic estimates of electric vehicle charging given observed driver behavior

Siobhan Powell, Gustavo Vianna Cezar and Ram Rajagopal

Applied Energy, 2022, vol. 309, issue C, No S0306261921016214

Abstract: To prepare for rapid growth in global electric vehicle adoption, grid and policy planners depend on detailed forecasts of future charging demand. In this paper we propose a novel holistic, scalable, probabilistic framework to produce large-scale estimates of electric vehicle charging load for long-term planning that capture real drivers’ charging patterns. Our framework captures the uncertainty and stochasticity in charging demand by taking a graphical modeling approach. It has three core elements: driver groups, charging segment choices, and charging session time and energy requirements. The framework uses hierarchical clustering to group drivers by their charging histories, capturing their heterogeneous behaviors and preferences across different segments or types of charging. The framework uses probabilistic mixture models for each driver group’s sessions to identify the unique charging behaviors observed within each segment. We illustrate its application with a large data set from California, profiling the charging patterns and unique driver clusters it identifies. Using the model knobs representing drivers’ battery capacities, behavior, and segment access we present scenarios for California’s charging demand in 2030 with 8 million passenger electric vehicles. Peak charging demand ranged from 3.3 to 8.7 GW across scenarios. Each was calculated in under 45 s on a laptop computer.

Keywords: Electric vehicle; Charging behavior; Graphical model; Clustering; Long-term planning; Large-scale (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (11)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261921016214
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:309:y:2022:i:c:s0306261921016214

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2021.118382

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:309:y:2022:i:c:s0306261921016214