EconPapers    
Economics at your fingertips  
 

Enhancing energy management in grid-interactive buildings: A comparison among cooperative and coordinated architectures

Giuseppe Pinto, Anjukan Kathirgamanathan, Eleni Mangina, Donal P. Finn and Alfonso Capozzoli

Applied Energy, 2022, vol. 310, issue C, No S0306261921017128

Abstract: The increasing penetration of renewable energy sources has the potential to contribute towards the decarbonisation of the building energy sector. However, this transition brings its own challenges including that of energy integration and potential grid instability issues arising due the stochastic nature of variable renewable energy sources. One potential approach to address these issues is demand side management, which is increasingly seen as a promising solution to improve grid stability. This is achieved by exploiting demand flexibility and shifting peak demand towards periods of peak renewable energy generation. However, the energy flexibility of a single building needs to be coordinated with other buildings to be used in a flexibility market. In this context, multi-agent systems represent a promising tool for improving the energy management of buildings at the district and grid scale. The present research formulates the energy management of four buildings equipped with thermal energy storage and PV systems as a multi-agent problem. Two multi-agent reinforcement learning methods are explored: a centralised (coordinated) controller and a decentralised (cooperative) controller, which are benchmarked against a rule-based controller. The two controllers were tested for three different climates, outperforming the rule-based controller by 3% and 7% respectively for cost, and 10% and 14% respectively for peak demand. The study shows that the multi-agent cooperative approach may be more suitable for districts with heterogeneous objectives within the individual buildings.

Keywords: Deep Reinforcement Learning (DRL); Building energy flexibility; Soft Actor Critic (SAC); Multi Agent Reinforcement Learning (MARL); Grid-interactive buildings (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261921017128
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:310:y:2022:i:c:s0306261921017128

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2021.118497

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:310:y:2022:i:c:s0306261921017128