Evaluation of the impact of input uncertainty on urban building energy simulations using uncertainty and sensitivity analysis
Enrico Prataviera,
Jacopo Vivian,
Giulia Lombardo and
Angelo Zarrella
Applied Energy, 2022, vol. 311, issue C, No S0306261922001568
Abstract:
The energy consumption of cities is increasing fast due to growing global population and rapid urbanization. Urban Building Energy Models (UBEMs) are promising tools to simulate the energy demand of buildings under different urban scenarios. Nowadays, the major barriers to the effective use of UBEMs are the uncertainty related to their input parameters and the lack of good-quality, open energy consumption data. The latter make deterministic UBEM simulations unreliable, and calibration approaches unsuitable for most cities in the world. The present work proposes to combine physics-based UBEMs with Uncertainty and Sensitivity Analysis on the main input parameters using aggregated data on energy use from regional/national statistics. The proposed procedure selects the most influential input parameters and characterizes their uncertainty through Forward Uncertainty Analysis and Sensitivity Analysis to obtain stochastic load profiles for space heating and cooling. The method was first tested against hourly thermal power profiles metered on a heterogeneous sample of buildings in Verona (Italy). The average heating load profile obtained is significantly improved compared to deterministic, archetype-based simulations in terms of energy needs and peak loads. The overestimation of residential buildings peak load is reduced from 80% to 25%, and the deviation in the energy needs calculation drops from 18% to 10%. The proposed simulation procedure was then applied to a district of Milan (Italy), including more than 600 buildings, resulting in similar variations. Overall, the results demonstrate that considering the uncertainty of operational, geometrical and physical parameters is of the utmost importance to obtain reliable urban simulations.
Keywords: UBEM; Forward Uncertainty Analysis; Sensitivity Analysis; Monte Carlo simulation; Urban Simulation reliability (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (13)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261922001568
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:311:y:2022:i:c:s0306261922001568
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2022.118691
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().