An efficient and incentive-compatible market design for energy storage participation
Xichen Fang,
Hongye Guo,
Xian Zhang,
Xuanyuan Wang and
Qixin Chen
Applied Energy, 2022, vol. 311, issue C, No S030626192200188X
Abstract:
With the increasing penetration of renewables, energy storage systems (ESS) are becoming growingly important due to its peak-shaving ability. However, the current market mechanism is not well prepared for the participation of the ESSs. Firstly, the current bidding structure requires the ESSs to submit separate parameters for charging and discharging, but this structure is inconsistent with their operating characteristics. Secondly, the current settlement rule settles the ESSs according to time-variant locational marginal prices (LMP), but the diminishing intertemporal price spreads will encourage them to behave strategically. To this end, this paper proposes a novel bidding structure, a corresponding clearing model and a modified settlement rule: The bidding structure for the ESSs includes cost functions with respect to cycling mileages and valuation functions for ending stored energy. Thereafter the independent system operators (ISO) will manage the ESSs’ state of charge (SOC) and clear the market. A settlement rule based on Vickery-Clarke-Groves (VCG) mechanism and Asymmetric Nash Bargaining theory is adopted to incentivize the ESSs to behave honestly. Numerical tests are conducted to illustrate the social welfare efficiency, incentive compatibility and computational tractability of the proposed mechanism.
Keywords: Energy storages; Market mechanism; Bidding structure; Settlement rule; Incentive compatibility (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S030626192200188X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:311:y:2022:i:c:s030626192200188x
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2022.118731
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().