EconPapers    
Economics at your fingertips  
 

An efficient and incentive-compatible market design for energy storage participation

Xichen Fang, Hongye Guo, Xian Zhang, Xuanyuan Wang and Qixin Chen

Applied Energy, 2022, vol. 311, issue C, No S030626192200188X

Abstract: With the increasing penetration of renewables, energy storage systems (ESS) are becoming growingly important due to its peak-shaving ability. However, the current market mechanism is not well prepared for the participation of the ESSs. Firstly, the current bidding structure requires the ESSs to submit separate parameters for charging and discharging, but this structure is inconsistent with their operating characteristics. Secondly, the current settlement rule settles the ESSs according to time-variant locational marginal prices (LMP), but the diminishing intertemporal price spreads will encourage them to behave strategically. To this end, this paper proposes a novel bidding structure, a corresponding clearing model and a modified settlement rule: The bidding structure for the ESSs includes cost functions with respect to cycling mileages and valuation functions for ending stored energy. Thereafter the independent system operators (ISO) will manage the ESSs’ state of charge (SOC) and clear the market. A settlement rule based on Vickery-Clarke-Groves (VCG) mechanism and Asymmetric Nash Bargaining theory is adopted to incentivize the ESSs to behave honestly. Numerical tests are conducted to illustrate the social welfare efficiency, incentive compatibility and computational tractability of the proposed mechanism.

Keywords: Energy storages; Market mechanism; Bidding structure; Settlement rule; Incentive compatibility (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S030626192200188X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:311:y:2022:i:c:s030626192200188x

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2022.118731

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:311:y:2022:i:c:s030626192200188x