Role of hydrogen-based energy carriers as an alternative option to reduce residual emissions associated with mid-century decarbonization goals
Ken Oshiro and
Shinichiro Fujimori
Applied Energy, 2022, vol. 313, issue C, No S0306261922002501
Abstract:
Hydrogen-based energy carriers, including hydrogen, ammonia and synthetic hydrocarbons, are expected to help reduce residual carbon dioxide emissions in the context of the Paris Agreement goals, although their potential has not yet been fully clarified in light of their competitiveness and complementarity with other mitigation options such as electricity, biofuels and carbon capture and storage (CCS). This study aimed to explore the role of hydrogen in the global energy system under various mitigation scenarios and technology portfolios using a detailed energy system model that considers various energy technologies including the conversion and use of hydrogen-based energy carriers. The results indicate that the share of hydrogen-based energy carriers generally remains less than 5% of global final energy demand by 2050 in the 2 °C scenarios. Nevertheless, such carriers contribute to removal of residual emissions from the industry and transport sectors under specific conditions. Their share increases to 10–15% under stringent mitigation scenarios corresponding to 1.5 °C warming and scenarios without CCS. The transport sector is the largest consumer, accounting for half or more of hydrogen production, followed by the industry and power sectors. In addition to direct usage of hydrogen and ammonia, synthetic hydrocarbons converted from hydrogen and carbon captured from biomass or direct air capture are attractive transport fuels, growing to half of all hydrogen-based energy carriers. Upscaling of electrification and biofuels is another common cost-effective strategy, revealing the importance of holistic policy design rather than heavy reliance on hydrogen.
Keywords: Climate change mitigation; Energy system; E-fuel; Integrated assessment model; Paris Agreement (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (14)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261922002501
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:313:y:2022:i:c:s0306261922002501
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2022.118803
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().