The potential of the natural gas grid to accommodate hydrogen as an energy vector in transition towards a fully renewable energy system
Piero Danieli,
Andrea Lazzaretto,
Jafar Al-Zaili,
Abdulnaser Sayma,
Massimo Masi and
Gianluca Carraro
Applied Energy, 2022, vol. 313, issue C, No S0306261922002811
Abstract:
The temporal and geographical availability of renewable energy sources is highly variable, which imposes the importance of correct choices for energy storage and energy transport systems. This paper presents a smart strategy to utilize the natural gas distribution grid to transport and store the hydrogen. The goal is twofold: evaluating the capacity limits of the grid to accommodate “green hydrogen” for preset increasing shares of renewable energy sources (RESs) and determining at the same time the optimal mix of wind, photovoltaic (PV), biomethane and power-to-gas systems that minimizes the investment and operation costs. To this end, the energy supply system of an entire country is modelled and optimized considering the real characteristics and pressure levels of the gas grid, which is assumed to be the only storage mechanism of green hydrogen. The operational concept is to fill up the gas grid with hydrogen during the day and with natural gas during the night while always consuming the natural gas-hydrogen blend. Green hydrogen is generated by electrolysers powered by PVs, wind turbines and biomethane power systems. Results of the optimizations showed that: i) as long as the share of RES does not exceed 20%, there is no need to use the gas grid as RES storage system, ii) from 20 to 50% of RES share the gas grid receives the surplus of electricity in the peaks that would be necessary to “complete” the dispatchability of RES electricity, iii) above 50%, the excess of electricity in the peaks has to be used to generate the thermal energy required by the consumers. The gas grid can be used as unique renewable energy carrier and storage system up to 65% of RES share.
Keywords: Power to gas; Natural gas distribution grid; Hydrogen; Renewable energy share; Methane and hydrogen blend (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (10)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261922002811
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:313:y:2022:i:c:s0306261922002811
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2022.118843
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().