EconPapers    
Economics at your fingertips  
 

Multi-step-ahead solar irradiance modeling employing multi-frequency deep learning models and climatic data

Vahid Nourani, Elnaz Sharghi, Nazanin Behfar and Yongqiang Zhang

Applied Energy, 2022, vol. 315, issue C, No S0306261922004627

Abstract: In this paper two enhanced long-short-term memory (LSTM) models of sequenced-LSTM (SLSTM) and wavelet-LSTM (WLSTM), provided for multi-step-ahead simulation of solar irradiance of six stations, located in Iran and USA. In this respect, twenty-year recorded solar irradiance and climate data were employed. The proposed multi-frequency models serve all the capabilities of classic LSTM network and also handle its weakness in detecting and modeling multi-frequency information that often included in natural datasets. The suggested methodology improved the long-short auto-regressive term of climate-solar irradiance data by including very long frequencies of time series. The results revealed that the suggested multi-frequency LSTM methods could exceed the feed forward neural network and classic LSTM network in test phase up to 23% and 13%, respectively.

Keywords: Solar Irradiance Prediction; LSTM Model; Multi-Frequency Analysis; Climate Data (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261922004627
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:315:y:2022:i:c:s0306261922004627

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2022.119069

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:315:y:2022:i:c:s0306261922004627