Towards unified machine learning characterization of lithium-ion battery degradation across multiple levels: A critical review
Alan G. Li,
Alan C. West and
Matthias Preindl
Applied Energy, 2022, vol. 316, issue C, No S0306261922004354
Abstract:
Lithium-ion battery (LIB) degradation is often characterized at three distinct levels: mechanisms, modes, and metrics. Recent trends in diagnostics and prognostics have been heavily influenced by machine learning (ML). This review not only provides a unique multi-level perspective on characterizing LIB degradation, but also highlights the role of ML in achieving higher accuracies with accelerated computation times. We survey the state-of-the-art in degradation research and show that existing techniques lay the foundations for a unified ML method – a single tool for characterizing degradation at multiple levels. This could inform optimal management of lithium-ion systems, thus extending lifetimes and reducing costs. We propose a framework for the hypothesized technique using pulse injection, digital-twinning, and neural networks, and identify the challenges and future trends in degradation research.
Keywords: Battery management systems; Machine learning; Lithium batteries (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261922004354
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:316:y:2022:i:c:s0306261922004354
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2022.119030
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().