EconPapers    
Economics at your fingertips  
 

Towards unified machine learning characterization of lithium-ion battery degradation across multiple levels: A critical review

Alan G. Li, Alan C. West and Matthias Preindl

Applied Energy, 2022, vol. 316, issue C, No S0306261922004354

Abstract: Lithium-ion battery (LIB) degradation is often characterized at three distinct levels: mechanisms, modes, and metrics. Recent trends in diagnostics and prognostics have been heavily influenced by machine learning (ML). This review not only provides a unique multi-level perspective on characterizing LIB degradation, but also highlights the role of ML in achieving higher accuracies with accelerated computation times. We survey the state-of-the-art in degradation research and show that existing techniques lay the foundations for a unified ML method – a single tool for characterizing degradation at multiple levels. This could inform optimal management of lithium-ion systems, thus extending lifetimes and reducing costs. We propose a framework for the hypothesized technique using pulse injection, digital-twinning, and neural networks, and identify the challenges and future trends in degradation research.

Keywords: Battery management systems; Machine learning; Lithium batteries (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261922004354
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:316:y:2022:i:c:s0306261922004354

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2022.119030

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:316:y:2022:i:c:s0306261922004354