A modified power management algorithm with energy efficiency and GHG emissions limitation for hybrid power ship system
Lei Xu,
Yintang Wen,
Xiaoyuan Luo,
Zhigang Lu and
Xinping Guan
Applied Energy, 2022, vol. 317, issue C, No S0306261922004950
Abstract:
With the integration of energy storage system (ESS), photovoltaic cell (PV) and generator, hybrid power ship system (HPSS), as one of promising technology, is regarded as an advanced method to improve energy efficiency and marine environment quality. However, the computational complexity and non-convexity of energy scheduling in hybrid power ship system make it challenging to obtain the feasible solution. To address this crucial issue, a heuristic optimization algorithm named multi-populations particle swarm optimization (MPPSO) is proposed for economic and feasible energy scheduling. Firstly, a hybrid power ship system, comprising generator, ESS, PV, service loads and propulsion system, is formulated. On this basis, a load shedding coefficient is given for the secure and stable operation of hybrid power ship system under fault model. Then, to achieve energy scheduling, several improvements are proposed to enhance PSO. Considering the problem of premature, a nonlinear adaptive inertial weight strategy is proposed to improve the searching ability. With the fitness value of population, learning coefficients are adjusted in nonlinear so that particle can accurately learn from individual or population position. Further, a modified velocity update formula with the information of historical experience and center particle is proposed to employ the particle information fully. Finally, the effectiveness of MPPSO is illustrated on simulation experiment by three cases.
Keywords: Hybrid power ship system; GHG emissions; Load shedding; Energy scheduling; Particle swarm optimization (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261922004950
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:317:y:2022:i:c:s0306261922004950
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2022.119114
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().