Coupled electrical-thermal performance estimation of photovoltaic devices: A transient multiphysics framework with robust parameter extraction and 3-D thermal analysis
Fuxiang Li and
Wei Wu
Applied Energy, 2022, vol. 319, issue C, No S0306261922006080
Abstract:
Realistic performance estimations of photovoltaic (PV) require a clear understanding of coupled electrical-thermal effects. Herein, a novel multiphysics framework, consisting of an electrical sub-model with improved parameter extraction and a thermal sub-model with 3-D thermal analysis, is proposed and validated to achieve reliable, fast, and all-sided performance estimations of PV. The electrical sub-model is firstly validated against experimental data and shows high robustness, with relative errors within 0.075% and elapsed time within 0.045 s. Then, the framework is validated against the experimental data on five consecutive summer days. Regardless of weather conditions or PV technologies, the simulated power output, back-surface temperature, and current–voltage curves are highly consistent with the measurement data. Notably, non-linear temperature-efficiency dependence and non-uniform temperature fields are observed in the results, with a maximum temperature difference of 4 °C and a peak temperature of about 54 °C. These results firmly indicate the necessity of coupled simulation and 3-D simulation. Finally, cross-comparisons with other methods are conducted. The electrical sub-model performs the best in most conditions in reality, with absolute errors within 0.75 W. The thermal sub-model approaches the state-of-the-art method with an average relative error of 6.47%. This framework is potential to advance the research and development of PV systems.
Keywords: Photovoltaic; Multiphysics simulation; Equivalent circuit; Electrical-thermal; Parameter extraction; Temperature field (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261922006080
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:319:y:2022:i:c:s0306261922006080
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2022.119249
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().