EconPapers    
Economics at your fingertips  
 

Microwave torrefaction integrated with gasification: Energy and exergy analyses based on Aspen Plus modeling

Liguo Jiao, Jian Li, Beibei Yan, Guanyi Chen and Sarwaich Ahmed

Applied Energy, 2022, vol. 319, issue C, No S0306261922006134

Abstract: The serious environmental issues are risen by the high-moisture herb residue (HR). Thermochemical conversion of HR shows the potential for not only clean treatment, but also utilizing its energy. In this study, microwave torrefaction (MT) and conventional torrefaction (CT) were integrated with gasification respectively, for the HR treatment. The systems were simulated and comparatively investigated by Aspen Plus. The modeling of MT was achieved for the first time, and it was validated by the experimental data. The effects of torrefaction on gasification performance were evaluated by exergy and energy analyses. The results showed that the exergy of MT-HR was 17.68 MJ/kg, which was higher than the raw HR and CT-HR, indicating the significant improvement for HR by MT. Meanwhile, the exergy of gasification syngas reached the highest as 7.93 MJ/h with MT, while and the exergy of tar was the lowest as 3.13 MJ/h. It was proved by energy analysis that MT could achieve self-powered in the integrated process, although MT consumed some energy. MT-gasification showed the best performance for electricity yield, due to MT could not only improved the gasification and combustion efficiency, but also reduce the negative influence of tar. This study provides a comprehensive evaluation for the application of MT, and it demonstrates the potential of MT as a promising pretreatment for thermal conversion of biomass waste.

Keywords: Microwave torrefaction; Herb residue; Gasification; Aspen Plus; Exergy analysis; Energy analysis (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261922006134
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:319:y:2022:i:c:s0306261922006134

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2022.119255

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:319:y:2022:i:c:s0306261922006134