Data-driven identification of lithium-ion batteries: A nonlinear equivalent circuit model with diffusion dynamics
Chuanxin Fan,
O’Regan, Kieran,
Liuying Li,
Matthew D. Higgins,
Emma Kendrick and
Widanalage D. Widanage
Applied Energy, 2022, vol. 321, issue C, No S0306261922006821
Abstract:
An accurate battery model is essential for battery management system (BMS) applications. However, existing models either do not describe battery physics or are too computationally intensive for practical applications. This paper presents a non-linear equivalent circuit model with diffusion dynamics (NLECM-diff) which phenomenologically describes the main electrochemical behaviours, such as ohmic, charge-transfer kinetics, and solid-phase diffusion. A multisine approach is applied to identify the elements for high frequency dynamics, as well as a distributed SoC dependent diffusion model block is optimized to account for long time dynamics. The model identification procedure is conducted on a three-electrode experimental cell, such that NLECM-diff models are developed for each electrode to then obtain the full cell voltage. Results imply that the NLECM-diff reduces the voltage root mean square error (RMSE) by 49.6% compared to a conventional ECM in the long duration discharge and has comparable accuracy to a parameterized SPMe in the NEDC driving cycle. Additionally, the variation of diffusion-related characteristics of the negative electrode under different currents is determined as the primary reason of the battery models’ large low-SoC-range error. Furthermore, the diffusion process is determined as the dominant voltage loss contributor in the long duration discharge and the ohmic voltage loss is identified as the dominant dynamic under NEDC driving profile.
Keywords: Battery modelling; System identification; Multisine excitation; Surface state of charge; Non-linear equivalent circuit model (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261922006821
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:321:y:2022:i:c:s0306261922006821
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2022.119336
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().