Site demonstration and performance evaluation of MPC for a large chiller plant with TES for renewable energy integration and grid decarbonization
Donghun Kim,
Zhe Wang,
James Brugger,
David Blum,
Michael Wetter,
Tianzhen Hong and
Mary Ann Piette
Applied Energy, 2022, vol. 321, issue C, No S0306261922006894
Abstract:
Thermal energy storage (TES) for a cooling plant is a crucial resource for load flexibility. Traditionally, simple, heuristic control approaches, such as the storage priority control which charges TES during the nighttime and discharges during the daytime, have been widely used in practice, and shown reasonable performance in the past benefiting both the grid and the end-users such as buildings and district energy systems. However, the increasing penetration of renewables changes the situation, exposing the grid to a growing duck curve, which encourages the consumption of more energy in the daytime, and volatile renewable generation which requires dynamic planning. The growing pressure of diminishing greenhouse gas emissions also increases the complexity of cooling TES plant operations as different control strategies may apply to optimize operations for energy cost or carbon emissions. This paper presents a model predictive control (MPC), site demonstration and evaluation results of optimal operation of a chiller plant, TES and behind-meter photovoltaics for a campus-level district cooling system. The MPC was formulated as a mixed-integer linear program for better numerical and control properties. Compared with baseline rule-based controls, the MPC results show reductions of the excess PV power by around 25%, of the greenhouse gas emission by 10%, and of peak electricity demand by 10%.
Keywords: MPC demonstration; Building optimal control; Model predictive control; District energy system; Carbon reduction; Renewable energy (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (10)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261922006894
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:321:y:2022:i:c:s0306261922006894
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2022.119343
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().