Battery health-aware and naturalistic data-driven energy management for hybrid electric bus based on TD3 deep reinforcement learning algorithm
Ruchen Huang,
Hongwen He,
Xuyang Zhao,
Yunlong Wang and
Menglin Li
Applied Energy, 2022, vol. 321, issue C, No S0306261922006985
Abstract:
Energy management is critical to reduce energy consumption and extend the service life of hybrid power systems. This article proposes an energy management strategy based on deep reinforcement learning with awareness of battery health for an urban power-split hybrid electric bus. In this article, a specific driving cycle of the test bus route is constructed through a naturalistic data-driven method to evaluate the practical operating costs of the hybrid electric bus accurately. Furthermore, an energy management strategy based on twin delayed deep deterministic policy gradient algorithm considering battery health is innovatively designed to minimize the total operating cost with a tradeoff between fuel consumption and battery degradation. Finally, the superiority of the proposed strategy over other state-of-the-art deep reinforcement learning-based strategies including deep deterministic policy gradient and double deep Q-learning is validated. Simulation results show that the constructed driving cycle can effectively reflect the real traffic conditions of the test bus route, and the proposed strategy can reduce the total operating cost while extending the battery life efficiently. This article makes contribution to the reliable evaluation of the practical operating costs and the extension of the battery life for urban hybrid electric buses through deep reinforcement learning methods.
Keywords: Hybrid electric bus; Energy management; Battery health; Driving cycle construction; Twin delayed deep deterministic policy gradient (TD3) (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (20)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261922006985
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:321:y:2022:i:c:s0306261922006985
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2022.119353
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().