EconPapers    
Economics at your fingertips  
 

Biomechanical energy harvesting for wearable and mobile devices: State-of-the-art and future directions

Mingyi Liu, Feng Qian, Jia Mi and Lei Zuo

Applied Energy, 2022, vol. 321, issue C, No S0306261922007218

Abstract: Wearable and mobile devices, such as smartphones, smartwatches, wearable medical devices, etc., have become an important part of our daily life. Most of these devices are powered by electrochemical batteries, which have limited energy capacity, need periodic replacement or recharging, and lead to environmental concerns. On the one hand, there is a huge amount of energy stored in the human body and the energy dissipation rate is more than 100 Watts. While on the other hand, the power requirement of typical wearable and mobile devices is less than 1 Watt and keeps decreasing as a result of the rapid development of technologies. Extracting a small amount of energy from the human body can provide enough power for wearable/mobile devices, and enable a convenient, sustainable, eco-friendly, and self-powered alternative to batteries. Many biomechanical energy-harvesting devices have emerged in recent years, of which the excitation source, mechanical modulation, energy conversion method, and performance are vastly different from one another. However, no comprehensive work has been found in the literature that conducted systematical review of the pioneer works from the perspective of modeling of biomechanical energy harvesters. This work reviews the modeling and performance of the state-of-the-art biomechanical energy harvesting devices and classifies them into three categories in terms of excitation mechanisms, specifically, relative-motion-excited, inertia-excited, and force-excited. Different energy-conversion transducers are analyzed and compared, including electromagnetic, piezoelectric, electrostatic, and triboelectric. The evaluation metrics are defined for fair comparisons. The results show that biomechanical energy harvesting has a promising application prospect in many areas, such as health care monitoring systems and wearable electronics, and the current power output and density could be up to 5 W and 10 W/kg. Energy harvesting from negative muscle work may reduce the metabolic cost of human motion while harvesting electrical power. Meanwhile, the review also reveals potential problems that hind the commercialization and practical applications of biomechanical energy harvesting technologies, such as the cost, invasiveness to human body, and interference to human dynamics.

Keywords: Energy harvesting; Human motion; Kinetic energy; Wearable and mobile device; Negative muscle work; Self-powered; Sustainable energy (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261922007218
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:321:y:2022:i:c:s0306261922007218

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2022.119379

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:321:y:2022:i:c:s0306261922007218