EconPapers    
Economics at your fingertips  
 

All-climate thermal management structure for batteries based on expanded graphite/polymer composite phase change material with a high thermal and electrical conductivity

Gong Cheng, Zhangzhou Wang, Xinzhi Wang and Yurong He

Applied Energy, 2022, vol. 322, issue C, No S0306261922008315

Abstract: With the large-scale application of lithium battery technology, a thermal management system is required to ensure battery performance and safety in all climates. This study reports an all-climate battery thermal management structure based on an expanded graphite/polymer/paraffin wax ternary composite phase change material with high thermal (19.3 Wm−2/K) and electrical (1590.5 S/m) conductivity. The thermal management structure adopts a double-layer structure, an inter phase change material with high thermal and electrical conductivity, and an outer phase change material with low thermal conductivity as a heat preservation and insulation medium. The thermal management structure innovation uses the phase change material and the battery to form a preheating circuit to generate Joule heat to warm up the battery at low temperatures. This heating method uses the energy of the battery to greatly improve the adaptability of the thermal management system. The preheating speed reaches 20.5 °C/min at –20 °C. The phase change material can continue to generate heat during the discharge process of the battery to ensure normal operation. At a discharge rate of 1C and at –20 °C, the discharge energy increased by 35.5% compared with the case without preheating. In addition to acting as a heating element, phase change materials also act as heat dissipation media in high temperature environments, the structure exhibited a good heat dissipation capacity. At 35 °C, the temperature of the battery was controlled at 42.2 °C after the battery was discharged at a rate of 2C.

Keywords: All-climate thermal management; Self-preheating; High thermal and electrical conductivity composite phase change material; Lithium-ion battery (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (11)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261922008315
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:322:y:2022:i:c:s0306261922008315

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2022.119509

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:322:y:2022:i:c:s0306261922008315