EconPapers    
Economics at your fingertips  
 

The gas grid as a vector for regional decarbonisation - a techno economic case study for biomethane injection and natural gas heavy goods vehicles

Niamh Keogh, D. Corr, R. O'Shea and R.F.D. Monaghan

Applied Energy, 2022, vol. 323, issue C, No S0306261922008984

Abstract: This paper presents a novel method for incorporating the seasonal variations in gas demand into an assessment of the economic viability of a biomethane production and injection facility. A simulation of a gas distribution (Dx) network was built to investigate the impact of limits imposed by the gas network operator on the quantity of biomethane that can be injected. The results calculated the grid’s capacity to accept biomethane on an hourly basis over the course of a year. Scenarios of maximum, minimum and no demand at a Dx-connected compressed natural gas (CNG) filling station were computed for the 3 potential locations being investigated for the biomethane production and injection facility. This data was then used to determine a range of possible plant sizes for each potential facility location and CNG demand scenario. Next, a spatially explicit geographical information systems (GIS) model was created to map the distribution of feedstock suitable for biomethane production in the surrounding area and determine transportation distances. These two submodels fed into a techno-economic model that calculates the net present value (NPV) and levelised cost of energy (LCOE) for each configuration. Notably, the profitability of the plant was seen to increase proportionally with an increase in demand at the CNG filling station. Location 2 was determined to be the most economically viable site for the biomethane production and injection facility. The most economically competitive configurations resulted in an LCOE of 81.63 €/MWh, 83.59 €/MWh, and 83.73 €/MWh, with corresponding NPVs of M€ 9.56, M€ 3.98 and M€ 0.94, for maximum, minimum and no demand at the CNG filling station respectively. The most competitive configurations are achieved at a plant size of 115 GWh/a for the maximum CNG demand, 82.2 GWh/a for the minimum CNG demand, and 81.8 GWh/a for no CNG demand replacing 40%, 34%, and 35% of annual natural gas demand in the Dx network respectively.

Keywords: Gas network; Compressed Natural Gas; Biomethane; Techno-economic; Grid Injection (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261922008984
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:323:y:2022:i:c:s0306261922008984

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2022.119590

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:323:y:2022:i:c:s0306261922008984