LOSISH—LOad Scheduling In Smart Homes based on demand response: Application to smart grids
Bashar Chreim,
Moez Esseghir and
Leila Merghem-Boulahia
Applied Energy, 2022, vol. 323, issue C, No S0306261922009114
Abstract:
The evolution towards Smart Grids (SGs) represents an important opportunity for modernization of the energy industry. It is characterized by a bidirectional flow of information and energy between consumers and suppliers. However, the rapid increase of energy demands in residential areas is becoming a challenging problem. In order to address this issue, Demand-Side Management (DSM) has proven to be an effective solution. In this paper, we propose LOSISH, a price-based Demand Response (DR) system for load scheduling in residential Smart Homes (SHs) that achieves a trade-off between electricity payments and consumer’s discomfort. Our proposed system considers Renewable Energy Sources (RESs), Battery Energy Storage System (BESS) and Plug-in Electric Vehicle (PEV). We formulate our scheduling as a constrained optimization problem and we propose a new hybrid algorithm to solve it. The latter combines two well known heuristic algorithms: Particle Swarm Optimization (PSO) and Binary Particle Swarm Optimization (BPSO). Moreover, we propose a new clustering algorithm based on Machine Learning (ML) to extract consumer’s preferences from a real dataset that contains the historical consumption patterns of his smart appliances. We test our approach on real data traces obtained from a SH and we set up an experiment to evaluate our algorithm on a Raspberry Pi and measure its energy consumption. To prove the effectiveness of our approach, we compare our results with another approach from the literature in terms of electricity bill, Peak-to-Average Ratio (PAR), energy consumption, and execution time. Numerical results show that LOSISH outperforms the other approach in terms of electricity bill (up to 52.92% cheaper), PAR (up to 44% decrease in peak demands), energy consumption (up to 69.44% less consumption), and execution time (up to 63.15% faster).
Keywords: Smart grids; Renewable energy sources; Energy storage system; Plugin electric vehicle; Demand response; Heuristic optimization; Clustering (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261922009114
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:323:y:2022:i:c:s0306261922009114
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2022.119606
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().