EconPapers    
Economics at your fingertips  
 

LOSISH—LOad Scheduling In Smart Homes based on demand response: Application to smart grids

Bashar Chreim, Moez Esseghir and Leila Merghem-Boulahia

Applied Energy, 2022, vol. 323, issue C, No S0306261922009114

Abstract: The evolution towards Smart Grids (SGs) represents an important opportunity for modernization of the energy industry. It is characterized by a bidirectional flow of information and energy between consumers and suppliers. However, the rapid increase of energy demands in residential areas is becoming a challenging problem. In order to address this issue, Demand-Side Management (DSM) has proven to be an effective solution. In this paper, we propose LOSISH, a price-based Demand Response (DR) system for load scheduling in residential Smart Homes (SHs) that achieves a trade-off between electricity payments and consumer’s discomfort. Our proposed system considers Renewable Energy Sources (RESs), Battery Energy Storage System (BESS) and Plug-in Electric Vehicle (PEV). We formulate our scheduling as a constrained optimization problem and we propose a new hybrid algorithm to solve it. The latter combines two well known heuristic algorithms: Particle Swarm Optimization (PSO) and Binary Particle Swarm Optimization (BPSO). Moreover, we propose a new clustering algorithm based on Machine Learning (ML) to extract consumer’s preferences from a real dataset that contains the historical consumption patterns of his smart appliances. We test our approach on real data traces obtained from a SH and we set up an experiment to evaluate our algorithm on a Raspberry Pi and measure its energy consumption. To prove the effectiveness of our approach, we compare our results with another approach from the literature in terms of electricity bill, Peak-to-Average Ratio (PAR), energy consumption, and execution time. Numerical results show that LOSISH outperforms the other approach in terms of electricity bill (up to 52.92% cheaper), PAR (up to 44% decrease in peak demands), energy consumption (up to 69.44% less consumption), and execution time (up to 63.15% faster).

Keywords: Smart grids; Renewable energy sources; Energy storage system; Plugin electric vehicle; Demand response; Heuristic optimization; Clustering (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261922009114
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:323:y:2022:i:c:s0306261922009114

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2022.119606

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:323:y:2022:i:c:s0306261922009114