EconPapers    
Economics at your fingertips  
 

Anomalously enhanced thermal performance of micro heat pipes coated with heterogeneous superwettable graphene nanostructures

Ving Onn Ng, XiangYu Hong, Hao Yu, HengAn Wu and Yew Mun Hung

Applied Energy, 2022, vol. 326, issue C, No S030626192201251X

Abstract: The thermal performance enhancement of micro heat pipe (MHP) array attributed to the incorporation of graphene nanoplatelets (GNPs) coatings with different wettability is investigated. The wettability of GNPs can be tuned to superhydrophilic and superhydrophobic via functionalization under thermal treatment. The micro/nano porous structures and ultrafast water transport property of the functionalized GNPs coatings are favourable to the three primary operational processes of an MHP, i.e., evaporation, condensation and circulation of working fluid. By coating superhydrophilic GNPs to the evaporator and superhydrophobic GNPs to the condenser, the evaporation and condensation strength can be simultaneously enhanced. The ultrafast water transport property of GNPs also provides nanocapillary effect which significantly enhances the circulation rate of working fluid. The combined enhancement of evaporation, condensation, and fluid circulation synergistically leads to anomalous thermal performance enhancement of MHP. By benchmarking with the uncoated MHP, the overall performance of a heterogeneous-wettability-coated MHP, as quantified by its effective thermal conductivity, manifests a maximum enhancement of 307%. An enhancement of 206% in the heat transfer coefficient and a dramatic temperature drop of 45 °C of the heated surface are achieved. To elucidate the underlying mechanism leading to the anomalous performance enhancement, molecular dynamics simulations are performed to investigate the ultrafast water transport through the superwettable GNPs nanostructures. This study paves the way for promising applications of heterogeneous superwettable GNPs nanostructures in micro-scale capillary-driven devices for electronics cooling.

Keywords: Graphene nanoplatelets; Heterogeneous wettability; Microelectronics cooling; Micro heat pipe; Ultrafast water transport (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S030626192201251X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:326:y:2022:i:c:s030626192201251x

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2022.119994

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:326:y:2022:i:c:s030626192201251x