Online state of charge and state of power co-estimation of lithium-ion batteries based on fractional-order calculus and model predictive control theory
Ruohan Guo and
Weixiang Shen
Applied Energy, 2022, vol. 327, issue C, No S0306261922012661
Abstract:
Accurate battery modelling is the cornerstone to state of charge (SOC) and state of power (SOP) co-estimation of lithium-ion batteries in electric vehicles. Due to strong battery nonlinearity over a broad frequency range, traditional integer-order models are incapable of capturing complex battery dynamics for SOC and SOP co-estimation. This paper proposes a fractional-order modified moving horizon estimation (FO-mMHE) algorithm and a fractional-order model predictive control (FO-MPC) algorithm. Firstly, a second-order FOM is constructed by performing a series of hybrid pulse tests at different SOC regions, and its model parameters are identified through a particle swarm optimization-genetic algorithm method. Secondly, online SOC estimation is converted into a constrained optimization problem in a past moving horizon and then solved by the FO-mMHE algorithm, which enables fast convergence speed and proactive smoothing of estimation outcomes. Thirdly, the FO-MPC algorithm is devised to manipulate the current sequence in a prediction horizon for maximizing discharge/charge power accumulation and determining battery SOP in real time. Moreover, different battery current–voltage behaviors are comprehensively researched in the prediction horizon over a whole battery operating range. The proposed co-estimation method is validated under different dynamic load profiles. The experimental results demonstrate a SOC estimation error reduction of up to 1.2 % compared with the commonly used fractional-order extended Kalman filter while the SOP estimation error could be limited below 0.35 W.
Keywords: Lithium-ion batteries; Fractional-order calculus; Model predictive control; State of charge; State of power (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261922012661
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:327:y:2022:i:c:s0306261922012661
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2022.120009
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().