EconPapers    
Economics at your fingertips  
 

Online state of charge and state of power co-estimation of lithium-ion batteries based on fractional-order calculus and model predictive control theory

Ruohan Guo and Weixiang Shen

Applied Energy, 2022, vol. 327, issue C, No S0306261922012661

Abstract: Accurate battery modelling is the cornerstone to state of charge (SOC) and state of power (SOP) co-estimation of lithium-ion batteries in electric vehicles. Due to strong battery nonlinearity over a broad frequency range, traditional integer-order models are incapable of capturing complex battery dynamics for SOC and SOP co-estimation. This paper proposes a fractional-order modified moving horizon estimation (FO-mMHE) algorithm and a fractional-order model predictive control (FO-MPC) algorithm. Firstly, a second-order FOM is constructed by performing a series of hybrid pulse tests at different SOC regions, and its model parameters are identified through a particle swarm optimization-genetic algorithm method. Secondly, online SOC estimation is converted into a constrained optimization problem in a past moving horizon and then solved by the FO-mMHE algorithm, which enables fast convergence speed and proactive smoothing of estimation outcomes. Thirdly, the FO-MPC algorithm is devised to manipulate the current sequence in a prediction horizon for maximizing discharge/charge power accumulation and determining battery SOP in real time. Moreover, different battery current–voltage behaviors are comprehensively researched in the prediction horizon over a whole battery operating range. The proposed co-estimation method is validated under different dynamic load profiles. The experimental results demonstrate a SOC estimation error reduction of up to 1.2 % compared with the commonly used fractional-order extended Kalman filter while the SOP estimation error could be limited below 0.35 W.

Keywords: Lithium-ion batteries; Fractional-order calculus; Model predictive control; State of charge; State of power (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261922012661
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:327:y:2022:i:c:s0306261922012661

Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic

DOI: 10.1016/j.apenergy.2022.120009

Access Statistics for this article

Applied Energy is currently edited by J. Yan

More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:appene:v:327:y:2022:i:c:s0306261922012661