Aggregated Net-load Forecasting using Markov-Chain Monte-Carlo Regression and C-vine copula
S. Sreekumar,
N.U. Khan,
A.S. Rana,
M. Sajjadi and
D.P. Kothari
Applied Energy, 2022, vol. 328, issue C, No S0306261922014283
Abstract:
Net-load is the difference between total load and renewable generation and acts as an effective system load to which dispatchable generators are scheduled and system flexibility requirements are estimated. This necessitates accurate net-load forecasts for optimum scheduling and flexibility requirement estimations. Net-Load Forecasting (NLF) got only little attention in existing literature even though it is essential for optimal generation scheduling and power system flexibility requirement estimations. Time series and machine learning models have been used for NLF in recent years, however, there is vast scope existing for improving accuracy. Probabilistic forecasting models are widely used for various forecasting problems such as load, wind, and solar generation forecasting as those models show improved forecasting accuracy. In this context, this paper proposes a novel probabilistic aggregated very short-term NLF model based on Markov Chain Monte Carlo (MCMC) Regression. MCMC uses data augmentation, where unobserved variables are simulated from their posterior distribution and this makes MCMC approach suitable for regression. Further, MCMC forecasts are improved by incorporating C-vine copula-based Joint Probability Distribution (JPD) of expected load, wind, and solar generation forecasting errors. The C-vine copula is suitable for such multi-variable JPD estimation due to its enormous flexibility in stochastic multivariate dependence modelling compared to standard elliptical and Archimedean copulas. Results show that the proposed NLF model outperforms reference models and can produce accurate net-load forecasts.
Keywords: Copula theory; Forecasting; Net-load; Markov Chain Monte Carlo method; Power system planning; Renewable generation (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261922014283
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:328:y:2022:i:c:s0306261922014283
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2022.120171
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().