Design and on-site implementation of an off-grid marine current powered hydrogen production system
Hongwei Liu,
He Ren,
Yajing Gu,
Yonggang Lin,
Weifei Hu,
Jiajun Song,
Jinhong Yang,
Zengxin Zhu and
Wei Li
Applied Energy, 2023, vol. 330, issue PB, No S0306261922016312
Abstract:
In this work, an off-grid hydrogen production system powered by marine current energy was studied, which employed a horizontal axis marine current turbine (HAMCT) and a polymer electrolyte membrane (PEM) electrolyzer fed with ultrapure water. The fluid kinetic energy of the marine current will be captured by the turbine and finally stored as hydrogen energy through the electrolysis reaction in the electrolyzer. It is important to fully understand the characteristics of the electrolyzer for the stable and efficient operation of the system. Here, a dynamic model of PEM electrolyzers was developed, which is based on the Hammerstein structure. The particle swarm optimization (PSO) method and the least squares method were used to fit the static part and the dynamic part of the model, respectively. The experimental validation shows enough precision for engineering applications and the ability to characterize the transient behavior of the electrolyzer. Faraday’s efficiency of the stack was modeled using an empirical formula. The simulation of the proposed system was then carried out using the measured current velocity data as input. The results demonstrate that the system achieved the designed operating performance with the power coefficient of 0.42 and the estimated average energy conversion efficiency from marine current-to-hydrogen of 16.4%. Then, the sea trial was conducted in Zhoushan Archipelago. The power coefficient and the average energy conversion efficiency were found to be 0.35 and 11.9% respectively, with a decrease compared to the simulated results, which was attributed to the idealization of the simulation model and the degradation of the PEM electrolyzer. The performance degradation of the PEM electrolyzer throughout experiments and its effects were discussed. The principle and feasibility of the marine current-hydrogen system were successfully demonstrated.
Keywords: Marine current turbine; Hydrogen production; PEM electrolysis; Modelling; Sea trial (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0306261922016312
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:appene:v:330:y:2023:i:pb:s0306261922016312
Ordering information: This journal article can be ordered from
http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
http://www.elsevier. ... 405891/bibliographic
DOI: 10.1016/j.apenergy.2022.120374
Access Statistics for this article
Applied Energy is currently edited by J. Yan
More articles in Applied Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().